Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.851
Filtrar
1.
Trends Hear ; 28: 23312165241246596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738341

RESUMEN

The auditory brainstem response (ABR) is a valuable clinical tool for objective hearing assessment, which is conventionally detected by averaging neural responses to thousands of short stimuli. Progressing beyond these unnatural stimuli, brainstem responses to continuous speech presented via earphones have been recently detected using linear temporal response functions (TRFs). Here, we extend earlier studies by measuring subcortical responses to continuous speech presented in the sound-field, and assess the amount of data needed to estimate brainstem TRFs. Electroencephalography (EEG) was recorded from 24 normal hearing participants while they listened to clicks and stories presented via earphones and loudspeakers. Subcortical TRFs were computed after accounting for non-linear processing in the auditory periphery by either stimulus rectification or an auditory nerve model. Our results demonstrated that subcortical responses to continuous speech could be reliably measured in the sound-field. TRFs estimated using auditory nerve models outperformed simple rectification, and 16 minutes of data was sufficient for the TRFs of all participants to show clear wave V peaks for both earphones and sound-field stimuli. Subcortical TRFs to continuous speech were highly consistent in both earphone and sound-field conditions, and with click ABRs. However, sound-field TRFs required slightly more data (16 minutes) to achieve clear wave V peaks compared to earphone TRFs (12 minutes), possibly due to effects of room acoustics. By investigating subcortical responses to sound-field speech stimuli, this study lays the groundwork for bringing objective hearing assessment closer to real-life conditions, which may lead to improved hearing evaluations and smart hearing technologies.


Asunto(s)
Estimulación Acústica , Electroencefalografía , Potenciales Evocados Auditivos del Tronco Encefálico , Percepción del Habla , Humanos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Masculino , Femenino , Percepción del Habla/fisiología , Estimulación Acústica/métodos , Adulto , Adulto Joven , Umbral Auditivo/fisiología , Factores de Tiempo , Nervio Coclear/fisiología , Voluntarios Sanos
2.
Hear Res ; 446: 108997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564963

RESUMEN

The use of cochlear implants (CIs) is on the rise for patients with vestibular schwannoma (VS). Besides CI following tumor resection, new scenarios such as implantation in observed and/or irradiated tumors are becoming increasingly common. A significant emerging trend is the need of intraoperative evaluation of the functionality of the cochlear nerve in order to decide if a CI would be placed. The purpose of this paper is to explore the experience of a tertiary center with the application of the Auditory Nerve Test System (ANTS) in various scenarios regarding VS patients. The results are compared to that of the studies that have previously used the ANTS in this condition. Patients with unilateral or bilateral VS (NF2) who were evaluated with the ANTS prior to considering CI in a tertiary center between 2021 and 2023 were analyzed. The presence of a robust wave V was chosen to define a positive electrical auditory brainstem response (EABR). Two patients underwent promontory stimulation (PromStim) EABR previous to ANTS evaluation. Seven patients, 2 NF-2 and 5 with sporadic VS were included. The initial scenario was simultaneous translabyrinthine (TL) tumor resection and CI in 3 cases while a CI placement without tumor resection was planned in 4 cases. The ANTS was positive in 4 cases, negative in 2 cases, and uncertain in one case. Two patients underwent simultaneous TL and CI, 1 patient simultaneous TL and auditory brainstem implant, 3 patients posterior tympanotomy with CI, and 1 patient had no implant placement. In the 5 patients undergoing CI, sound detection was present. There was a good correlation between the PromStim and ANTS EABR. The literature research yielded 35 patients with complete information about EABR response. There was one false negative and one false positive case; that is, the 28 implanted cases with a present wave V following tumor resection had some degree of auditory perception in all but one case. The ANTS is a useful intraoperative tool to asses CI candidacy in VS patients undergoing observation, irradiation or surgery. A positive strongly predicts at least sound detection with the CI.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Nervio Coclear , Potenciales Evocados Auditivos del Tronco Encefálico , Audición , Neuroma Acústico , Humanos , Neuroma Acústico/cirugía , Neuroma Acústico/fisiopatología , Persona de Mediana Edad , Implantación Coclear/instrumentación , Nervio Coclear/fisiopatología , Femenino , Masculino , Adulto , Anciano , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Monitorización Neurofisiológica Intraoperatoria/métodos , Estudios Retrospectivos , Toma de Decisiones Clínicas , Estimulación Acústica , Selección de Paciente
3.
Hear Res ; 446: 109005, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598943

RESUMEN

Auditory nerve (AN) fibers that innervate inner hair cells in the cochlea degenerate with advancing age. It has been proposed that age-related reductions in brainstem frequency-following responses (FFR) to the carrier of low-frequency, high-intensity pure tones may partially reflect this neural loss in the cochlea (Märcher-Rørsted et al., 2022). If the loss of AN fibers is the primary factor contributing to age-related changes in the brainstem FFR, then the FFR could serve as an indicator of cochlear neural degeneration. In this study, we employed electrocochleography (ECochG) to investigate the effects of age on frequency-following neurophonic potentials, i.e., neural responses phase-locked to the carrier frequency of the tone stimulus. We compared these findings to the brainstem-generated FFRs obtained simultaneously using the same stimulation. We conducted recordings in young and older individuals with normal hearing. Responses to pure tones (250 ms, 516 and 1086 Hz, 85 dB SPL) and clicks were recorded using both ECochG at the tympanic membrane and traditional scalp electroencephalographic (EEG) recordings of the FFR. Distortion product otoacoustic emissions (DPOAE) were also collected. In the ECochG recordings, sustained AN neurophonic (ANN) responses to tonal stimulation, as well as the click-evoked compound action potential (CAP) of the AN, were significantly reduced in the older listeners compared to young controls, despite normal audiometric thresholds. In the EEG recordings, brainstem FFRs to the same tone stimulation were also diminished in the older participants. Unlike the reduced AN CAP response, the transient-evoked wave-V remained unaffected. These findings could indicate that a decreased number of AN fibers contributes to the response in the older participants. The results suggest that the scalp-recorded FFR, as opposed to the clinical standard wave-V of the auditory brainstem response, may serve as a more reliable indicator of age-related cochlear neural degeneration.


Asunto(s)
Estimulación Acústica , Envejecimiento , Audiometría de Respuesta Evocada , Cóclea , Nervio Coclear , Potenciales Evocados Auditivos del Tronco Encefálico , Degeneración Nerviosa , Humanos , Femenino , Cóclea/fisiopatología , Cóclea/inervación , Adulto , Anciano , Masculino , Persona de Mediana Edad , Adulto Joven , Factores de Edad , Nervio Coclear/fisiopatología , Envejecimiento/fisiología , Electroencefalografía , Audiometría de Tonos Puros , Umbral Auditivo , Presbiacusia/fisiopatología , Presbiacusia/diagnóstico , Valor Predictivo de las Pruebas , Factores de Tiempo
4.
Sci Rep ; 14(1): 9593, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671022

RESUMEN

Moderate-to-profound sensorineural hearing loss in humans is treatable by electrically stimulating the auditory nerve (AN) with a cochlear implant (CI). In the cochlea, the modiolus presents a porous bony interface between the CI electrode and the AN. New bone growth caused by the presence of the CI electrode or neural degeneration inflicted by ageing or otological diseases might change the effective porosity of the modiolus and, thereby, alter its electrical material properties. Using a volume conductor description of the cochlea, with the aid of a 'mapped conductivity' method and an ad-hoc 'regionally kinetic' equation system, we show that even a slight variation in modiolus porosity or pore distribution can disproportionately affect AN stimulation. Hence, because of porosity changes, an inconsistent CI performance might occur if neural degeneration or new bone growth progress after implantation. Appropriate electrical material properties in accordance with modiolar morphology and pathology should be considered in patient-specific studies. The present first-of-its-kind in-silico study advocates for contextual experimental studies to further explore the utility of modiolus porous morphology in optimising the CI outcome.


Asunto(s)
Implantes Cocleares , Ganglio Espiral de la Cóclea , Porosidad , Humanos , Nervio Coclear , Neuronas/fisiología , Estimulación Eléctrica , Pérdida Auditiva Sensorineural/terapia , Pérdida Auditiva Sensorineural/cirugía , Cóclea
5.
Sci Data ; 11(1): 411, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649691

RESUMEN

This dataset was collected to study the functional consequences of age-related hearing loss for the auditory nerve, which carries acoustic information from the periphery to the central auditory system. Using high-impedance glass electrodes, raw voltage traces and spike times were recorded from more than one thousand single fibres of the auditory nerve of young-adult, middle-aged, and old Mongolian gerbils raised in a quiet environment. The dataset contains not only responses to simple acoustic stimuli to characterize the fibres, but also to more complex stimuli, such as speech logatomes in background noise and Schroeder-phase stimuli. A software toolbox is provided to search through the dataset, to plot various analysed outcomes, and to give insight into the analyses. This dataset may serve as a valuable resource to test further hypotheses about age-related hearing loss. Additionally, it can aid in optimizing available computational models of the auditory system, which can contribute to, or eventually even fully replace, animal experiments.


Asunto(s)
Envejecimiento , Nervio Coclear , Gerbillinae , Animales , Gerbillinae/fisiología , Nervio Coclear/fisiología , Estimulación Acústica
6.
Acta Otolaryngol ; 144(2): 130-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38634540

RESUMEN

BACKGROUND: Deaf children with cochlear nerve canal stenosis (CNCs) are always considered poor candidates for cochlear implantation. OBJECTIVES: To investigate the function of the peripheral auditory pathway in deaf children with CNCs, as revealed by the electrically evoked auditory brainstem response (EABR), and postoperative cochlear implants (CIs) outcomes. MATERIALS AND METHODS: Thirteen children with CNCs and 13 children with no inner ear malformations (IEMs) who received CIs were recruited. The EABR evoked by electrical stimulation from the CI electrode was recorded. Postoperative CI outcomes were assessed using Categories of Auditory Performance (CAP) and Speech Intelligibility Rate (SIR). RESULTS: Compared with children with no IEMs, children with CNCs showed lower EABR extraction rates, higher thresholds, a longer wave V (eV) latency and lower CAP and SIR scores. The auditory and speech performance was positively correlated with the diameter of the cochlear nerve canal and the number of channels showing wave III (eIII) and eV in children with CNCs. CONCLUSIONS AND SIGNIFICANCE: The physiological function of the peripheral auditory pathway in children with CNCs is poorer than that in children with no IEMs. Postoperative auditory and speech abilities may depend on the severity of cochlear nerve malformation and auditory conduction function.


Asunto(s)
Nervio Coclear , Sordera , Potenciales Evocados Auditivos del Tronco Encefálico , Humanos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Masculino , Femenino , Preescolar , Nervio Coclear/fisiopatología , Nervio Coclear/anomalías , Sordera/fisiopatología , Sordera/congénito , Sordera/cirugía , Niño , Constricción Patológica , Implantación Coclear/métodos
7.
J Comp Neurol ; 532(3): e25601, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38450738

RESUMEN

Vocalization of tetrapods evolved as an air-driven mechanism. Thus, it is conceivable that the underlaying neural network might have evolved from more ancient respiratory circuits and be made up of homologous components that generate breathing rhythms across vertebrates. In this context, the extant species of stem anurans provide an opportunity to analyze the connection of the neural circuits of lung ventilation and vocalization. Here, we analyzed the fictive lung ventilation and vocalization behavior of isolated brains of the Chinese fire-bellied toad Bombina orientalis during their mating season by nerve root recordings. We discovered significant differences in durations of activation of male brains after stimulation of the statoacoustic nerve or vocalization-relevant forebrain structures in comparison to female brains. The increased durations of motor nerve activities in male brains can be interpreted as fictive calling, as male's advertisement calls in vivo had the same general pattern compared to lung ventilation, but longer duration periods. Female brains react to the corresponding stimulations with the same shorter activity pattern that occurred spontaneously in both female and male brains and thus can be interpreted as fictive lung ventilations. These results support the hypothesis that vocal circuits evolved from ancient respiration networks in the anuran caudal hindbrain. Moreover, we could show that the terrestrial stem archeobatrachian Bombina spec. is an appropriate model to study the function and evolution of the shared network of lung ventilation and vocal generation.


Asunto(s)
Nervio Coclear , Prosencéfalo , Femenino , Masculino , Animales , Anuros , Comunicación Celular , Reproducción
8.
J Acoust Soc Am ; 155(3): 1799-1812, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445986

RESUMEN

Non-invasive electrophysiological measures, such as auditory evoked potentials (AEPs), play a crucial role in diagnosing auditory pathology. However, the relationship between AEP morphology and cochlear degeneration remains complex and not well understood. Dau [J. Acoust. Soc. Am. 113, 936-950 (2003)] proposed a computational framework for modeling AEPs that utilized a nonlinear auditory-nerve (AN) model followed by a linear unitary response function. While the model captured some important features of the measured AEPs, it also exhibited several discrepancies in response patterns compared to the actual measurements. In this study, an enhanced AEP modeling framework is presented, incorporating an improved AN model, and the conclusions from the original study were reevaluated. Simulation results with transient and sustained stimuli demonstrated accurate auditory brainstem responses (ABRs) and frequency-following responses (FFRs) as a function of stimulation level, although wave-V latencies remained too short, similar to the original study. When compared to physiological responses in animals, the revised model framework showed a more accurate balance between the contributions of auditory-nerve fibers (ANFs) at on- and off-frequency regions to the predicted FFRs. These findings emphasize the importance of cochlear processing in brainstem potentials. This framework may provide a valuable tool for assessing human AN models and simulating AEPs for various subtypes of peripheral pathologies, offering opportunities for research and clinical applications.


Asunto(s)
Nervio Coclear , Potenciales Evocados Auditivos , Animales , Humanos , Percepción Auditiva , Cóclea , Simulación por Computador
9.
PLoS One ; 19(3): e0299911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451925

RESUMEN

INTRODUCTION: The functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans. METHODS: We recruited adult cochlear implant recipients from the Clinical Hospital of the Universidad de Chile, between the years 2021 and 2022. We used the AIM System from Advanced Bionics® to obtain single trial electrocochleography signals from the most apical electrode in cochlear implant users. We performed a protocol to study spontaneous activity and auditory responses to 0.5 and 2 kHz tones. RESULTS: Twenty subjects including 12 females, with a mean age of 57.9 ± 12.6 years (range between 36 and 78 years) were recruited. The electrical noise of the single trial cochlear implant electrocochleography signal yielded a reliable peak at 3.1 kHz in 55% of the cases (11 out of 20 subjects), while an oscillatory pattern that masked the spectrum was observed in seven cases. In the other two cases, the single-trial noise was not classifiable. Auditory stimulation at 0.5 kHz and 2.0 kHz did not change the amplitude of the 3.1 kHz frequency peak. CONCLUSION: We found two main types of noise patterns in the frequency analysis of the single-trial noise from cochlear implant electrocochleography, including a peak at 3.1 kHz that might reflect auditory-nerve spontaneous activity, while the oscillatory pattern probably corresponds to an artifact.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Estimulación Acústica/métodos , Audiometría de Respuesta Evocada/métodos , Nervio Coclear/fisiología , Ruido , Masculino
10.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473985

RESUMEN

In mammalian hearing, type-I afferent auditory nerve fibers comprise the basis of the afferent auditory pathway. They are connected to inner hair cells of the cochlea via specialized ribbon synapses. Auditory nerve fibers of different physiological types differ subtly in their synaptic location and morphology. Low-spontaneous-rate auditory nerve fibers typically connect on the modiolar side of the inner hair cell, while high-spontaneous-rate fibers are typically found on the pillar side. In aging and noise-damaged ears, this fine-tuned balance between auditory nerve fiber populations can be disrupted and the functional consequences are currently unclear. Here, using immunofluorescent labeling of presynaptic ribbons and postsynaptic glutamate receptor patches, we investigated changes in synaptic morphology at three different tonotopic locations along the cochlea of aging gerbils compared to those of young adults. Quiet-aged gerbils showed about 20% loss of afferent ribbon synapses. While the loss was random at apical, low-frequency cochlear locations, at the basal, high-frequency location it almost exclusively affected the modiolar-located synapses. The subtle differences in volumes of pre- and postsynaptic elements located on the inner hair cell's modiolar versus pillar side were unaffected by age. This is consistent with known physiology and suggests a predominant, age-related loss in the low-spontaneous-rate auditory nerve population in the cochlear base, but not the apex.


Asunto(s)
Cóclea , Sinapsis , Animales , Gerbillinae , Cóclea/metabolismo , Sinapsis/metabolismo , Nervio Coclear/metabolismo , Células Ciliadas Auditivas Internas/metabolismo
11.
J Neurosurg Pediatr ; 33(5): 496-504, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427998

RESUMEN

OBJECTIVE: Pediatric data regarding treatment via an auditory brainstem implant (ABI) remains sparse. The authors aimed to describe their experience at their institution and to delineate associated demographic data, audiometric outcomes, and surgical parameters. METHODS: An IRB-approved, retrospective chart review was conducted among the authors' pediatric patients who had undergone auditory brainstem implantation between 2012 and 2021. Demographic information including sex, age, race, coexisting syndrome(s), history of cochlear implant placement, average duration of implant use, and follow-up outcomes were collected. Surgical parameters collected included approach, intraoperative findings, number of electrodes activated, and complications. RESULTS: A total of 19 pediatric patients had an ABI placed at the authors' institution, with a mean age at surgery of 4.7 years (range 1.5-17.8 years). A total of 17 patients (89.5%) had bilateral cochlear nerve aplasia/dysplasia, 1 (5.3%) had unilateral cochlear nerve aplasia/dysplasia, and 1 (5.3%) had a hypoplastic cochlea with ossification. A total of 11 patients (57.9%) had a history of cochlear implants that were ineffective and required removal. The mean length of implant use was 5.31 years (0.25-10 years). Two patients (10.5%) experienced CSF-related complications requiring further surgical intervention. The most recent audiometric outcomes demonstrated that 15 patients (78.9%) showed improvement in their hearing ability: 5 with sound/speech awareness, 5 able to discriminate among speech and environmental sounds, and 5 able to understand common phrases/conversation without lip reading. Nine patients (47.4%) are in a school for the deaf and 7 (36.8%) are in a mainstream school with support. CONCLUSIONS: The authors' surgical experience with a multidisciplinary team demonstrates that the retrosigmoid approach for ABI placement in children with inner ear pathologies and severe sensorineural hearing loss is a safe and effective treatment modality. Audiometric outcome data showed that nearly 79% of these patients had an improvement in their environmental and speech awareness. Further multicenter collaborations are necessary to improve these outcomes and potentially standardize/enhance electrode placement.


Asunto(s)
Audiometría , Implantación Auditiva en el Tronco Encefálico , Humanos , Niño , Masculino , Femenino , Preescolar , Adolescente , Estudios Retrospectivos , Lactante , Implantación Auditiva en el Tronco Encefálico/métodos , Resultado del Tratamiento , Implantes Auditivos de Tronco Encefálico , Nervio Coclear/cirugía , Nervio Coclear/anomalías , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología
12.
PLoS One ; 19(2): e0297640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394067

RESUMEN

This study aimed to compare the development of pronunciation in South Korean preschoolers with unilateral cochlear nerve deficiency (CND) to that of age-matched preschoolers with normal hearing, a topic that has not been explored previously. In a retrospective analysis, 25 preschoolers with unilateral CND who had undergone a speech evaluation battery, including a pronunciation and vocabulary test, were enrolled. Utilizing the Urimal Test of Articulation and Phonation and customized language ability tests, pronunciation and vocabulary were assessed. The subjects' speech evaluation scores were converted into age-adjusted z-scores using normal controls' data. While vocabulary performance was within normal limits, their average pronunciation z-score was -2.90, significantly lower than both the zero reference point and their vocabulary z-scores. None of the subjects scored above average in pronunciation. Thirteen patients were recommended for articulation therapy, seven were considered as potential candidates for this therapy, and the remaining five were within normal limits. There was no observed correlation between the development of pronunciation and vocabulary. Notably, some subjects' pronunciation scores did not improve, even after serial follow-up during their preschool years. Despite typical vocabulary development, preschoolers with unilateral CND exhibit significant delays in pronunciation. These findings emphasize the necessity for vigilant monitoring of their language development.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Pérdida Auditiva Unilateral , Percepción del Habla , Preescolar , Humanos , Estudios Retrospectivos , Lenguaje , Vocabulario , Desarrollo del Lenguaje , Sordera/cirugía , Nervio Coclear , Percepción del Habla/fisiología
13.
Hear Res ; 443: 108966, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310710

RESUMEN

The nonlinearities of the inner ear are often considered to be obstacles that the central nervous system has to overcome to decode neural responses to sounds. This review describes how peripheral nonlinearities, such as saturation of the inner-hair-cell response and of the IHC-auditory-nerve synapse, are instead beneficial to the neural encoding of complex sounds such as speech. These nonlinearities set up contrast in the depth of neural-fluctuations in auditory-nerve responses along the tonotopic axis, referred to here as neural fluctuation contrast (NFC). Physiological support for the NFC coding hypothesis is reviewed, and predictions of several psychophysical phenomena, including masked detection and speech intelligibility, are presented. Lastly, a framework based on the NFC code for understanding how the medial olivocochlear (MOC) efferent system contributes to the coding of complex sounds is presented. By modulating cochlear gain control in response to both sound energy and fluctuations in neural responses, the MOC system is hypothesized to function not as a simple feedback gain-control device, but rather as a mechanism for enhancing NFC along the tonotopic axis, enabling robust encoding of complex sounds across a wide range of sound levels and in the presence of background noise. Effects of sensorineural hearing loss on the NFC code and on the MOC feedback system are presented and discussed.


Asunto(s)
Cóclea , Pérdida Auditiva Sensorineural , Humanos , Cóclea/fisiología , Ruido/efectos adversos , Nervio Coclear , Células Ciliadas Auditivas Internas/fisiología
14.
Otol Neurotol ; 45(3): e206-e213, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38361306

RESUMEN

INTRODUCTION: Electrically evoked compound action potentials (ECAPs) are used for intra-/postoperative monitoring with intracochlear stimulation of cochlear implants. ECAPs are recorded in MED-EL (Innsbruck, Austria) implants using auditory response telemetry (ART), which has been further developed with automatic threshold determination as AutoART. The success of an ECAP measurement also depends on the number of available spiral ganglion cells and the bipolar neurons of the cochlear nerve (CN). It is assumed that a higher population of spiral ganglion cell implies a larger CN cross-sectional area (CSA), which consequently affects ECAP measurements. METHODS: Intraoperative ECAP measurements from 19 implanted ears of children aged 8 to 18 months were retrospectively evaluated. A comparison and correlation of ART/AutoART ECAP thresholds/slopes at electrodes E2 (apical), E6 (medial), E10 (basal), and averaged E1 to E12 with CN CSA on magnetic resonance imaging was performed. RESULTS: A Pearson correlation of the ART/AutoART ECAP thresholds/slopes for E2/E6/E10 and the averaged electrodes E1 to E12 showed a significant correlation. The CN CSA did not correlate significantly with the averaged ART/AutoART ECAP thresholds/slopes across all 12 electrodes. SUMMARY: AutoART provides reliable measurements and is therefore a suitable alternative to ART. No significant influence of CN CSA on ECAP thresholds/slopes was observed. A predictive evaluation of the success of ECAP measurements based on CN CSA for a clinical setting cannot be made according to the present data.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Niño , Lactante , Humanos , Preescolar , Estudios Retrospectivos , Potenciales Evocados Auditivos/fisiología , Implantación Coclear/métodos , Nervio Coclear/fisiología , Potenciales de Acción/fisiología , Estimulación Eléctrica
15.
J Assoc Res Otolaryngol ; 25(1): 35-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278969

RESUMEN

PURPOSE: Frequency selectivity is a fundamental property of the peripheral auditory system; however, the invasiveness of auditory nerve (AN) experiments limits its study in the human ear. Compound action potentials (CAPs) associated with forward masking have been suggested as an alternative to assess cochlear frequency selectivity. Previous methods relied on an empirical comparison of AN and CAP tuning curves in animal models, arguably not taking full advantage of the information contained in forward-masked CAP waveforms. METHODS: To improve the estimation of cochlear frequency selectivity based on the CAP, we introduce a convolution model to fit forward-masked CAP waveforms. The model generates masking patterns that, when convolved with a unitary response, can predict the masking of the CAP waveform induced by Gaussian noise maskers. Model parameters, including those characterizing frequency selectivity, are fine-tuned by minimizing waveform prediction errors across numerous masking conditions, yielding robust estimates. RESULTS: The method was applied to click-evoked CAPs at the round window of anesthetized chinchillas using notched-noise maskers with various notch widths and attenuations. The estimated quality factor Q10 as a function of center frequency is shown to closely match the average quality factor obtained from AN fiber tuning curves, without the need for an empirical correction factor. CONCLUSION: This study establishes a moderately invasive method for estimating cochlear frequency selectivity with potential applicability to other animal species or humans. Beyond the estimation of frequency selectivity, the proposed model proved to be remarkably accurate in fitting forward-masked CAP responses and could be extended to study more complex aspects of cochlear signal processing (e.g., compressive nonlinearities).


Asunto(s)
Cóclea , Nervio Coclear , Animales , Humanos , Potenciales de Acción , Ventana Redonda , Chinchilla
16.
J Assoc Res Otolaryngol ; 25(1): 63-78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278970

RESUMEN

PURPOSE: The hearing outcomes of cochlear implant users depend on the functional status of the electrode-neuron interface inside the cochlea. This can be assessed by measuring electrically evoked compound action potentials (eCAPs). Variations in cochlear neural health and survival are reflected in eCAP-based metrics. The difficulty in translating promising results from animal studies into clinical use has raised questions about to what degree eCAP-based metrics are influenced by non-neural factors. Here, we addressed these questions using a computational model. METHODS: A 2-D computational model was designed to simulate how electrical signals from the stimulating electrode reach the auditory nerve fibers distributed along the cochlea, evoking action potentials that can be recorded as compound responses at the recording electrodes. Effects of physiologically relevant variations in neural survival and in electrode-neuron and stimulating-recording electrode distances on eCAP amplitude growth functions (AGFs) were investigated. RESULTS: In line with existing literature, the predicted eCAP AGF slopes and the inter-phase gap (IPG) effects depended on the neural survival, but only when the IPG effect was calculated as the difference between the slopes of the two AGFs expressed in linear input-output scale. As expected, shallower eCAP AGF slopes were obtained for increased stimulating-recording electrode distance and larger eCAP thresholds for greater electrode-neuron distance. These non-neural factors had also minor interference on the predicted IPG effect. CONCLUSIONS: The model predictions demonstrate previously found dependencies of eCAP metrics on neural survival and non-neural aspects. The present findings confirm data from animal studies and provide insights into applying described metrics in clinical practice.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Animales , Cóclea , Nervio Coclear , Potenciales de Acción
17.
Hear Res ; 443: 108964, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277882

RESUMEN

Data from non-human primates can help extend observations from non-primate species to humans. Here we report measurements on the auditory nerve of macaque monkeys in the context of a controversial topic important to human hearing. A range of techniques have been used to examine the claim, which is not generally accepted, that human frequency tuning is sharper than traditionally thought, and sharper than in commonly used animal models. Data from single auditory-nerve fibers occupy a pivotal position to examine this claim, but are not available for humans. A previous study reported sharper tuning in auditory-nerve fibers of macaque relative to the cat. A limitation of these and other single-fiber data is that frequency selectivity was measured with tonal threshold-tuning curves, which do not directly assess spectral filtering and whose shape is sharpened by cochlear nonlinearity. Our aim was to measure spectral filtering with wideband suprathreshold stimuli in the macaque auditory nerve. We obtained responses of single nerve fibers of anesthetized macaque monkeys and cats to a suprathreshold, wideband, multicomponent stimulus designed to allow characterization of spectral filtering at any cochlear locus. Quantitatively the differences between the two species are smaller than in previous studies, but consistent with these studies the filters obtained show a trend of sharper tuning in macaque, relative to the cat, for fibers in the basal half of the cochlea. We also examined differences in group delay measured on the phase data near the characteristic frequency versus in the low-frequency tail. The phase data are consistent with the interpretation of sharper frequency tuning in monkey in the basal half of the cochlea. We conclude that use of suprathreshold, wide-band stimuli supports the interpretation of sharper frequency selectivity in macaque nerve fibers relative to the cat, although the difference is less marked than apparent from the assessment with tonal threshold-based data.


Asunto(s)
Cóclea , Nervio Coclear , Animales , Haplorrinos , Nervio Coclear/fisiología , Cóclea/fisiología , Audición/fisiología , Macaca , Umbral Auditivo/fisiología , Estimulación Acústica
18.
Int J Pediatr Otorhinolaryngol ; 176: 111797, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056092

RESUMEN

INTRODUCTION: Cochlear nerve deficiency (CND) is a cause of sensorineural hearing loss made by radiologic criteria. There is sparse literature involving audiological outcomes and cochlear implantation (CI) success in patients with CND. METHODS: A retrospective chart review of all patients with sensorineural hearing loss at a tertiary children's hospital from 2000 to 2020 was conducted. Patients with CND on radiographic imaging were included and categorized as hypoplastic, aplastic, or indeterminate. RESULTS: In this study, 53 patients were identified with CND, totaling 70 ears. Of the 53 patients, 30 (56.6 %) were male, 8 (16.0 %) had a family history of childhood hearing loss, 6 (11.3 %) were born preterm, and 11 (23.4 %) required neonatal intensive care admission. The median maternal age was 29 years old [IQR: 27, 35], and 8 (15 %) patients were born to mothers with diabetes. Of the 70 ears, 49 (70 %) utilized conventional hearing aids, 12 (17.1 %) utilized a bone-anchored hearing aid, and 10 (14.3 %) underwent CI. Of the 10 ears implanted, 4 (40 %) ears had nerves classified as hypoplastic, 3 (30 %) as aplastic, and 3 (30 %) as indeterminate. Improvement in pure tone averages compared to preoperative testing was demonstrated in 8 (80 %), and 6 (60 %) displayed improved speech awareness thresholds. CONCLUSION: This study demonstrates that there may be an association between CND and maternal diabetes and NICU admission. There are variable results with hearing amplification options in patients with CND, and further research is needed to better describe the role of CI, bone-anchored hearing aids and conventional hearing aids in patients with CND.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Diabetes Mellitus , Pérdida Auditiva Sensorineural , Niño , Recién Nacido , Femenino , Humanos , Masculino , Estudios Retrospectivos , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/cirugía , Implantación Coclear/métodos , Nervio Coclear/cirugía , Factores de Riesgo , Implantes Cocleares/efectos adversos
19.
Neurobiol Aging ; 133: 39-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913625

RESUMEN

After overexposure to loud music, we experience a decrease in our ability to hear (robustness), which usually recovers (resilience). Here, we exploited the amenable auditory system of the desert locust, Schistocerca gregaria, to measure how robustness and resilience depend on age. We found that gene expression changes are dominated by age as opposed to noise exposure. We measured sound-evoked nerve activity for young and aged locusts directly, after 24 hours and 48 hours after noise exposure. We found that both young and aged locusts recovered their auditory nerve function over 48 hours. We also measured the sound-evoked transduction current in individual auditory neurons, and although the transduction current magnitude recovered in the young locusts after noise exposure, it failed to recover in the aged locusts. A plastic mechanism compensates for the decreased transduction current in aged locusts. We suggest key genes upregulated in young noise-exposed locusts that mediate robustness to noise exposure and find potential candidates responsible for compensatory mechanisms in the auditory neurons of aged noise-exposed locusts.


Asunto(s)
Saltamontes , Animales , Saltamontes/genética , Audición , Nervio Coclear , Ruido , Envejecimiento/genética
20.
Hear Res ; 442: 108935, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113793

RESUMEN

Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.


Asunto(s)
Núcleo Coclear , Pérdida Auditiva , Humanos , Núcleo Coclear/patología , Nervio Coclear , Neuronas/patología , Sinapsis/patología , Ganglio Espiral de la Cóclea/patología , Cóclea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...